• 趋势分析

    掌控网站性能变化曲线,为网站速度优化提供有力的参考 [详细介绍]

  • 错误分析

    24小时监控数据的报错分析,网站在什么时间访问出错... [详细介绍]

  • 区域分析

    通过区域分析,迅速找出网站在哪些地方速度慢 [详细介绍]

  • ISP分析

    通过ISP分析,迅速找出网站在哪些运营商速度慢 [详细介绍]

  • 监测点分析

    提供监测点数据,以便反向查找问题 [详细介绍]

测速排名 今日 本周 本月

排名 域名 时间
1 www.11105.com 0.68095s
2 www.44119.com 0.85591s
3 www.85458.com 0.64466s
4 www.hg2672.com 0.17694s
5 www.52385.com 0.49234s
6 www.37050.com 0.16214s
7 www.20435.com 0.47581s
8 www.20296.com 0.52004s
9 www.0317.com 0.15411s
10 www.97877.com 0.79823s

最新测速

域名 类型 时间
www.45900.com get 0s
www.65780.com get 0.42162s
www.67669.com get 2.13554s
www.3985.com get 0.364633s
www.36802.com get 2.451897s
www.5338.com get 1.552324s
www.85406.com get 1.973923s
www.31908.com get 1.30066s
www.60798.com get 0.848875s
www.28753.com ping 0.330227s

更新动态 更多

 

http://euzs02.cn | http://www.yfb6ss1x.cn | http://m.y7565.cn | http://wap.6qyrgc5vz.cn | http://web.hl5xav5e.cn | http://ios.3qhh3.cn | http://anzhuo.zd8oe9.cn | http://book.ha504g5c.cn | http://news.9lpc3.cn

www.63279.com,www.93831.com测速|网站测速|网站速度测试

诺贝尔委员会成员奥洛夫·拉姆斯特伦评价获奖成果时说:“这一神奇电池所带来的巨大的、惊人的社会影响有目共睹。”诺贝尔委员会还说,获奖研究有助于我们从由化石燃料驱动的生活方式转向由电能驱动的生活方式,对于应对气候变化也至关重要。

如今,锂离子电池应用已经遍布普通人身边,但科学探索仍在继续。金钟表示,目前,电池研究领域关注的重点是实现如何使得电池的容量更高、寿命更长、充电时间更短、安全性和耐温性更好、价格更低廉,另外还要考虑到环保、可持续发展、稀缺矿物资源的高效利用和回收等,因此是非常系统化、复杂、交叉的前沿研究领域,还有很多的科学和技术问题有待去努力解决。

从智能手机、笔记本电脑等消费电子产品,到电动车和风能、太阳能等大型储能装置,如今锂离子电池已成为我们生活中不可或缺的“能量源”。

最年长获奖者,97岁科学家创纪录

这时,正如其名的意译“足够好”(Goodenough)一样,古迪纳夫贡献了“足够好”的新灵感。这位创造了诺奖获得者高龄新纪录的老人曾作为航空气象兵参加二战,战后又赴美国芝加哥大学深造获物理学博士学位。他在1980年发现,用钴酸锂作为阴极材料,比之前的二硫化钛更适合存储锂离子。目前,97岁的古迪纳夫仍在致力于电池研发。

在约翰·古迪纳夫研究的基础上,日本科学家吉野彰1985年研发了第一个可商用的电池,在电池的阳极使用了一种碳材料,替代了活性锂,可以插入锂离子。结果制成了重量轻、坚固耐用的电池,在其性能下降之前可以充电数百次。锂离子电池的优点在于,它们不是基于分解电极的化学反应,而是基于锂离子在阳极和阴极之间来回流动。

“电池的研究是一个非常有活力、引人入胜的研究领域。”金钟透露,科学家们正在开发下一代更高性能的锂离子电池,比如全固态、柔性锂离子电池等,也在研究其他的新型电池,包括锂硫电池、多价离子电池、金属空气电池和液流电池等,大家认为这些新型电池有希望在很多不同的应用场景发挥非常重要的作用。

2019年度诺贝尔化学奖将荣誉颁给锂离子电池的研发。这种重量轻、可充电、功能强大的电池被广泛应用于从手机到笔记本电脑和电动汽车等各个领域。来自美国和日本的三位科学家因在锂离子电池研发领域的贡献,共享今年的诺贝尔化学奖。其中,约翰·古迪纳夫出生于1922年,今年97岁高龄的他被誉为“锂离子电池之父”,他也是诺奖最年长的获奖者。

在约翰·古迪纳夫研究的基础上,日本科学家吉野彰1985年研发了第一个可商用的电池,在电池的阳极使用了一种碳材料,替代了活性锂,可以插入锂离子。结果制成了重量轻、坚固耐用的电池,在其性能下降之前可以充电数百次。锂离子电池的优点在于,它们不是基于分解电极的化学反应,而是基于锂离子在阳极和阴极之间来回流动。

南京大学化学化工学院教授吴强也在开展锂离子电池的相关研究。他告诉现代快报记者,目前研究者们的短期目标是提高锂离子电池的能量密度和功率密度,比如锂离子电池充一次电需要五六个小时,怎么才能充得更快,充一次电能跑得更远?更长期的研究目标在于延长锂离子电池的寿命、降低锂离子电池的成本,提高锂离子电池的安全性这三个方面。现在的锂离子电池充放电几百次可能就不能用了,如果能够充放电几千次上万次,就可以大大降低成本。因为锂资源比较稀缺,研究者们正在探索用钠离子、钾离子等更经济的金属离子取代锂离子,降低成本。此外,传统锂离子电池主要采用有机电解液,如果泄露,容易燃烧甚至发生爆炸,存在安全隐患,也有研究者们在探索使用不易燃烧的固态电解质取代有机电解液。

从智能手机、笔记本电脑等消费电子产品,到电动车和风能、太阳能等大型储能装置,如今锂离子电池已成为我们生活中不可或缺的“能量源”。

在远隔重洋的日本,吉野彰研发的阳极材料和古迪纳夫的阴极材料形成“天作之合”。吉野彰发现,石油焦炭可作为更好的阳极,但因找不到合适的阴极材料而苦恼。直到他读到古迪纳夫的论文,才兴奋地说“他的发现给了我所需要的一切”。至此,以钴酸锂为阴极,以碳材料为阳极的锂离子电池诞生了。

1991年,两人合作发明的锂离子电池正式上市销售,它轻巧耐用、安全可靠,在性能下降前可充放电数百次。

现代快报讯(记者 舒越 蔡梦莹)人们手中的每一部手机,桌面上每一台笔记本电脑,街头巷尾的电动汽车……它们的动力“心脏”来源于上世纪70年代开始的一项技术——锂离子电池。北京时间10月9日下午,瑞典皇家科学院宣布,将2019年诺贝尔化学奖授予来自美国的科学家约翰·古迪纳夫、斯坦利·惠廷厄姆和日本科学家吉野彰,以表彰他们在锂离子电池研发领域作出的贡献。

据了解,电池三要素分别是正极、负极和电解质。当负极发生氧化反应,放出电子,而在正极同时发生还原反应,接收来自负极的电子,产生了电流。因此,如果两个电极能够释放和接收较多电子时,发电效率将会提高。想要提高电池性能,就要从这三者入手。